Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

top12(free1(x), y) -> top22(check1(new1(x)), y)
top12(free1(x), y) -> top22(new1(x), check1(y))
top12(free1(x), y) -> top22(check1(x), new1(y))
top12(free1(x), y) -> top22(x, check1(new1(y)))
top22(x, free1(y)) -> top12(check1(new1(x)), y)
top22(x, free1(y)) -> top12(new1(x), check1(y))
top22(x, free1(y)) -> top12(check1(x), new1(y))
top22(x, free1(y)) -> top12(x, check1(new1(y)))
new1(free1(x)) -> free1(new1(x))
old1(free1(x)) -> free1(old1(x))
new1(serve) -> free1(serve)
old1(serve) -> free1(serve)
check1(free1(x)) -> free1(check1(x))
check1(new1(x)) -> new1(check1(x))
check1(old1(x)) -> old1(check1(x))
check1(old1(x)) -> old1(x)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

top12(free1(x), y) -> top22(check1(new1(x)), y)
top12(free1(x), y) -> top22(new1(x), check1(y))
top12(free1(x), y) -> top22(check1(x), new1(y))
top12(free1(x), y) -> top22(x, check1(new1(y)))
top22(x, free1(y)) -> top12(check1(new1(x)), y)
top22(x, free1(y)) -> top12(new1(x), check1(y))
top22(x, free1(y)) -> top12(check1(x), new1(y))
top22(x, free1(y)) -> top12(x, check1(new1(y)))
new1(free1(x)) -> free1(new1(x))
old1(free1(x)) -> free1(old1(x))
new1(serve) -> free1(serve)
old1(serve) -> free1(serve)
check1(free1(x)) -> free1(check1(x))
check1(new1(x)) -> new1(check1(x))
check1(old1(x)) -> old1(check1(x))
check1(old1(x)) -> old1(x)

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

TOP22(x, free1(y)) -> TOP12(x, check1(new1(y)))
TOP22(x, free1(y)) -> CHECK1(new1(y))
TOP12(free1(x), y) -> CHECK1(new1(x))
TOP22(x, free1(y)) -> TOP12(new1(x), check1(y))
TOP22(x, free1(y)) -> TOP12(check1(x), new1(y))
TOP22(x, free1(y)) -> CHECK1(x)
TOP22(x, free1(y)) -> TOP12(check1(new1(x)), y)
CHECK1(free1(x)) -> CHECK1(x)
CHECK1(old1(x)) -> OLD1(check1(x))
TOP12(free1(x), y) -> CHECK1(new1(y))
TOP12(free1(x), y) -> CHECK1(x)
TOP12(free1(x), y) -> NEW1(x)
CHECK1(new1(x)) -> CHECK1(x)
TOP22(x, free1(y)) -> NEW1(x)
TOP12(free1(x), y) -> TOP22(check1(x), new1(y))
TOP12(free1(x), y) -> TOP22(new1(x), check1(y))
TOP22(x, free1(y)) -> CHECK1(new1(x))
TOP12(free1(x), y) -> NEW1(y)
TOP12(free1(x), y) -> CHECK1(y)
TOP12(free1(x), y) -> TOP22(check1(new1(x)), y)
OLD1(free1(x)) -> OLD1(x)
CHECK1(old1(x)) -> CHECK1(x)
CHECK1(new1(x)) -> NEW1(check1(x))
TOP22(x, free1(y)) -> NEW1(y)
TOP22(x, free1(y)) -> CHECK1(y)
TOP12(free1(x), y) -> TOP22(x, check1(new1(y)))
NEW1(free1(x)) -> NEW1(x)

The TRS R consists of the following rules:

top12(free1(x), y) -> top22(check1(new1(x)), y)
top12(free1(x), y) -> top22(new1(x), check1(y))
top12(free1(x), y) -> top22(check1(x), new1(y))
top12(free1(x), y) -> top22(x, check1(new1(y)))
top22(x, free1(y)) -> top12(check1(new1(x)), y)
top22(x, free1(y)) -> top12(new1(x), check1(y))
top22(x, free1(y)) -> top12(check1(x), new1(y))
top22(x, free1(y)) -> top12(x, check1(new1(y)))
new1(free1(x)) -> free1(new1(x))
old1(free1(x)) -> free1(old1(x))
new1(serve) -> free1(serve)
old1(serve) -> free1(serve)
check1(free1(x)) -> free1(check1(x))
check1(new1(x)) -> new1(check1(x))
check1(old1(x)) -> old1(check1(x))
check1(old1(x)) -> old1(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

TOP22(x, free1(y)) -> TOP12(x, check1(new1(y)))
TOP22(x, free1(y)) -> CHECK1(new1(y))
TOP12(free1(x), y) -> CHECK1(new1(x))
TOP22(x, free1(y)) -> TOP12(new1(x), check1(y))
TOP22(x, free1(y)) -> TOP12(check1(x), new1(y))
TOP22(x, free1(y)) -> CHECK1(x)
TOP22(x, free1(y)) -> TOP12(check1(new1(x)), y)
CHECK1(free1(x)) -> CHECK1(x)
CHECK1(old1(x)) -> OLD1(check1(x))
TOP12(free1(x), y) -> CHECK1(new1(y))
TOP12(free1(x), y) -> CHECK1(x)
TOP12(free1(x), y) -> NEW1(x)
CHECK1(new1(x)) -> CHECK1(x)
TOP22(x, free1(y)) -> NEW1(x)
TOP12(free1(x), y) -> TOP22(check1(x), new1(y))
TOP12(free1(x), y) -> TOP22(new1(x), check1(y))
TOP22(x, free1(y)) -> CHECK1(new1(x))
TOP12(free1(x), y) -> NEW1(y)
TOP12(free1(x), y) -> CHECK1(y)
TOP12(free1(x), y) -> TOP22(check1(new1(x)), y)
OLD1(free1(x)) -> OLD1(x)
CHECK1(old1(x)) -> CHECK1(x)
CHECK1(new1(x)) -> NEW1(check1(x))
TOP22(x, free1(y)) -> NEW1(y)
TOP22(x, free1(y)) -> CHECK1(y)
TOP12(free1(x), y) -> TOP22(x, check1(new1(y)))
NEW1(free1(x)) -> NEW1(x)

The TRS R consists of the following rules:

top12(free1(x), y) -> top22(check1(new1(x)), y)
top12(free1(x), y) -> top22(new1(x), check1(y))
top12(free1(x), y) -> top22(check1(x), new1(y))
top12(free1(x), y) -> top22(x, check1(new1(y)))
top22(x, free1(y)) -> top12(check1(new1(x)), y)
top22(x, free1(y)) -> top12(new1(x), check1(y))
top22(x, free1(y)) -> top12(check1(x), new1(y))
top22(x, free1(y)) -> top12(x, check1(new1(y)))
new1(free1(x)) -> free1(new1(x))
old1(free1(x)) -> free1(old1(x))
new1(serve) -> free1(serve)
old1(serve) -> free1(serve)
check1(free1(x)) -> free1(check1(x))
check1(new1(x)) -> new1(check1(x))
check1(old1(x)) -> old1(check1(x))
check1(old1(x)) -> old1(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 4 SCCs with 14 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

OLD1(free1(x)) -> OLD1(x)

The TRS R consists of the following rules:

top12(free1(x), y) -> top22(check1(new1(x)), y)
top12(free1(x), y) -> top22(new1(x), check1(y))
top12(free1(x), y) -> top22(check1(x), new1(y))
top12(free1(x), y) -> top22(x, check1(new1(y)))
top22(x, free1(y)) -> top12(check1(new1(x)), y)
top22(x, free1(y)) -> top12(new1(x), check1(y))
top22(x, free1(y)) -> top12(check1(x), new1(y))
top22(x, free1(y)) -> top12(x, check1(new1(y)))
new1(free1(x)) -> free1(new1(x))
old1(free1(x)) -> free1(old1(x))
new1(serve) -> free1(serve)
old1(serve) -> free1(serve)
check1(free1(x)) -> free1(check1(x))
check1(new1(x)) -> new1(check1(x))
check1(old1(x)) -> old1(check1(x))
check1(old1(x)) -> old1(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


OLD1(free1(x)) -> OLD1(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(OLD1(x1)) = 2·x12   
POL(free1(x1)) = 2 + 2·x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

top12(free1(x), y) -> top22(check1(new1(x)), y)
top12(free1(x), y) -> top22(new1(x), check1(y))
top12(free1(x), y) -> top22(check1(x), new1(y))
top12(free1(x), y) -> top22(x, check1(new1(y)))
top22(x, free1(y)) -> top12(check1(new1(x)), y)
top22(x, free1(y)) -> top12(new1(x), check1(y))
top22(x, free1(y)) -> top12(check1(x), new1(y))
top22(x, free1(y)) -> top12(x, check1(new1(y)))
new1(free1(x)) -> free1(new1(x))
old1(free1(x)) -> free1(old1(x))
new1(serve) -> free1(serve)
old1(serve) -> free1(serve)
check1(free1(x)) -> free1(check1(x))
check1(new1(x)) -> new1(check1(x))
check1(old1(x)) -> old1(check1(x))
check1(old1(x)) -> old1(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

NEW1(free1(x)) -> NEW1(x)

The TRS R consists of the following rules:

top12(free1(x), y) -> top22(check1(new1(x)), y)
top12(free1(x), y) -> top22(new1(x), check1(y))
top12(free1(x), y) -> top22(check1(x), new1(y))
top12(free1(x), y) -> top22(x, check1(new1(y)))
top22(x, free1(y)) -> top12(check1(new1(x)), y)
top22(x, free1(y)) -> top12(new1(x), check1(y))
top22(x, free1(y)) -> top12(check1(x), new1(y))
top22(x, free1(y)) -> top12(x, check1(new1(y)))
new1(free1(x)) -> free1(new1(x))
old1(free1(x)) -> free1(old1(x))
new1(serve) -> free1(serve)
old1(serve) -> free1(serve)
check1(free1(x)) -> free1(check1(x))
check1(new1(x)) -> new1(check1(x))
check1(old1(x)) -> old1(check1(x))
check1(old1(x)) -> old1(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


NEW1(free1(x)) -> NEW1(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(NEW1(x1)) = 2·x12   
POL(free1(x1)) = 2 + 2·x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

top12(free1(x), y) -> top22(check1(new1(x)), y)
top12(free1(x), y) -> top22(new1(x), check1(y))
top12(free1(x), y) -> top22(check1(x), new1(y))
top12(free1(x), y) -> top22(x, check1(new1(y)))
top22(x, free1(y)) -> top12(check1(new1(x)), y)
top22(x, free1(y)) -> top12(new1(x), check1(y))
top22(x, free1(y)) -> top12(check1(x), new1(y))
top22(x, free1(y)) -> top12(x, check1(new1(y)))
new1(free1(x)) -> free1(new1(x))
old1(free1(x)) -> free1(old1(x))
new1(serve) -> free1(serve)
old1(serve) -> free1(serve)
check1(free1(x)) -> free1(check1(x))
check1(new1(x)) -> new1(check1(x))
check1(old1(x)) -> old1(check1(x))
check1(old1(x)) -> old1(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CHECK1(new1(x)) -> CHECK1(x)
CHECK1(old1(x)) -> CHECK1(x)
CHECK1(free1(x)) -> CHECK1(x)

The TRS R consists of the following rules:

top12(free1(x), y) -> top22(check1(new1(x)), y)
top12(free1(x), y) -> top22(new1(x), check1(y))
top12(free1(x), y) -> top22(check1(x), new1(y))
top12(free1(x), y) -> top22(x, check1(new1(y)))
top22(x, free1(y)) -> top12(check1(new1(x)), y)
top22(x, free1(y)) -> top12(new1(x), check1(y))
top22(x, free1(y)) -> top12(check1(x), new1(y))
top22(x, free1(y)) -> top12(x, check1(new1(y)))
new1(free1(x)) -> free1(new1(x))
old1(free1(x)) -> free1(old1(x))
new1(serve) -> free1(serve)
old1(serve) -> free1(serve)
check1(free1(x)) -> free1(check1(x))
check1(new1(x)) -> new1(check1(x))
check1(old1(x)) -> old1(check1(x))
check1(old1(x)) -> old1(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


CHECK1(new1(x)) -> CHECK1(x)
CHECK1(old1(x)) -> CHECK1(x)
CHECK1(free1(x)) -> CHECK1(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(CHECK1(x1)) = 2·x12   
POL(free1(x1)) = 2 + 2·x12   
POL(new1(x1)) = 2 + 2·x12   
POL(old1(x1)) = 2 + 2·x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

top12(free1(x), y) -> top22(check1(new1(x)), y)
top12(free1(x), y) -> top22(new1(x), check1(y))
top12(free1(x), y) -> top22(check1(x), new1(y))
top12(free1(x), y) -> top22(x, check1(new1(y)))
top22(x, free1(y)) -> top12(check1(new1(x)), y)
top22(x, free1(y)) -> top12(new1(x), check1(y))
top22(x, free1(y)) -> top12(check1(x), new1(y))
top22(x, free1(y)) -> top12(x, check1(new1(y)))
new1(free1(x)) -> free1(new1(x))
old1(free1(x)) -> free1(old1(x))
new1(serve) -> free1(serve)
old1(serve) -> free1(serve)
check1(free1(x)) -> free1(check1(x))
check1(new1(x)) -> new1(check1(x))
check1(old1(x)) -> old1(check1(x))
check1(old1(x)) -> old1(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

TOP22(x, free1(y)) -> TOP12(x, check1(new1(y)))
TOP12(free1(x), y) -> TOP22(check1(new1(x)), y)
TOP12(free1(x), y) -> TOP22(x, check1(new1(y)))
TOP12(free1(x), y) -> TOP22(check1(x), new1(y))
TOP12(free1(x), y) -> TOP22(new1(x), check1(y))
TOP22(x, free1(y)) -> TOP12(check1(x), new1(y))
TOP22(x, free1(y)) -> TOP12(new1(x), check1(y))
TOP22(x, free1(y)) -> TOP12(check1(new1(x)), y)

The TRS R consists of the following rules:

top12(free1(x), y) -> top22(check1(new1(x)), y)
top12(free1(x), y) -> top22(new1(x), check1(y))
top12(free1(x), y) -> top22(check1(x), new1(y))
top12(free1(x), y) -> top22(x, check1(new1(y)))
top22(x, free1(y)) -> top12(check1(new1(x)), y)
top22(x, free1(y)) -> top12(new1(x), check1(y))
top22(x, free1(y)) -> top12(check1(x), new1(y))
top22(x, free1(y)) -> top12(x, check1(new1(y)))
new1(free1(x)) -> free1(new1(x))
old1(free1(x)) -> free1(old1(x))
new1(serve) -> free1(serve)
old1(serve) -> free1(serve)
check1(free1(x)) -> free1(check1(x))
check1(new1(x)) -> new1(check1(x))
check1(old1(x)) -> old1(check1(x))
check1(old1(x)) -> old1(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.